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ABSTRACT

Machine learning has emerged as a powerful tool in the field of gamma-ray astrophysics. The algorithms can distinguish between
different source types, such as blazars and pulsars, and help uncover new insights into the high-energy universe. The Large
Area Telescope onboard the Fermi gamma-ray telescope has significantly advanced our understanding of the Universe. The
instrument has detected a large number of gamma-ray-emitting sources, among which a significant number of objects have
been identified as active galactic nuclei. The sample is primarily composed of blazars; however, more than one-third of these
sources are either of an unknown class or lack a definite association with a low-energy counterpart. In this work, we employ
multiple machine learning algorithms to classify the sources based on their other physical properties. In particular, we utilized
smart initialization techniques and self-supervised learning for classifying blazars into BL Lacertae (BL Lac, also BLL) objects
and flat-spectrum radio quasars (FSRQs). The core advantage of the algorithm is its simplicity, usage of minimum number of
features and easy deployment due to lesser number of parameters without compromising on the performance along with increase
in inference speed (at least seven times more than existing algorithms). As a result, the best-performing model is deployed on
multiple platforms so that any user irrespective of their coding background can use the tool. The model predicts that out of
the 1115 sources of uncertain type in the 4FGL-DR3 catalogue, 820 can be classified as BL Lacs and 295 can be classified as
FSRQ:s.
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1 INTRODUCTION

Blazars, belonging to the class of active galactic nuclei (AGNs),
stand out as some of the most luminous and exceptionally variable
sources in the Universe. These sources are recognized for their
high luminosity, broad-spectrum emissions, and significant rapid
variability across a wide range of the electromagnetic spectrum (see
e.g. Bhatta, Mohorian & Bilinsky 2018; Bhatta & Dhital 2020; Bhatta
2021). These exceptional characteristics are frequently associated
with the emission boosted by Doppler effects from the relativistic
outflows originating near the central engine (Urry & Padovani 1995;
Jorstad et al. 2017). Conventionally, these objects are typically
divided into two main groups: BL Lacertae (BL Lacs) and flat-
spectrum radio quasars (FSRQs).

The primary distinction between these two categories lies in the
fact that BL Lacs typically display either no or very faint emission
line spectra, whereas FSRQs commonly exhibit broad emission lines

* E-mail: g.bhatta@ia.uz.zgora.pl

and their synchrotron peak is at lower frequencies. While FSRQs
are more powerful sources, BL Lacs belong to an extreme class
characterized by an excess of high-energy emissions, ranging from
hard X-rays to TeV energies. In leptonic models of blazar, this
excess arises from synchrotron and inverse-Compton (IC) processes.
Their seemingly low luminosity may be attributed to the absence of
strong circumnuclear photon fields and relatively low accretion rates
(Ghisellini et al. 2011).

Blazars are known for emitting non-thermal radiation across a
wide spectrum, spanning from radio waves to TeV gamma-rays.
The spectral energy distributions (SEDs) of blazars exhibit two
distinct peaks. The first peak, observed in the infrared to soft X-
ray energy range, originates from synchrotron emission. In contrast,
the second peak, situated in the hard X-ray to gamma-ray region, is
associated with IC radiation, as per the leptonic model (see Bottcher
2019, for a recent review). The photons involved in IC scattering
can either arise from the same group of electrons responsible for
generating the synchrotron peak, as explained by the synchrotron
self-Compton (SSC) model (Maraschi, Ghisellini & Celotti 1992;
Bloom & Marscher 1996), or they can originate from external
sources, including, but not limited to, the accretion disc (Dermer &
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Schlickeiser 1993), the broad-line region (Sikora, Begelman & Rees
1994), or the dust torus (Btazejowski et al. 2000).

An alternative approach to categorizing blazars involves examin-
ing their SEDs and considering the synchrotron peak frequency (vs).
Following this approach, blazars can be classified into three cate-
gories: high-synchrotron peaked (HSP; vy > 10'5 Hz), intermediate-
synchrotron peaked (ISP; 10'* < v < 10" Hz), or low-synchrotron
peaked (LSP; v, < 10'* Hz) blazars. It is noteworthy that, in this
classification approach, FSRQs primarily fall under the category
of LSP. In the unifying scheme known as the blazar sequence,
the bolometric luminosity decreases as the sources transition from
FSRQs to HSP sources, whereas gamma-ray emissions increase
(Fossati et al. 1998; Ghisellini et al. 2017).

The Fermi Large Area Telescope (LAT), in operation since 2008,
conducts a continuous survey of the entire sky, identifying gamma-
ray sources within the energy range spanning from tens of MeV to the
TeV range (Atwood et al. 2009). Among the extragalactic gamma-ray
sources observed by the Fermi gamma-ray space telescope, blazars
constitute the largest population (Abdollahi et al. 2020). A significant
number, roughly one-third, of the blazar candidates identified by
Fermi-LAT up to this point belong to uncertain category. Blazar
candidates of uncertain type (BCU) are blazar candidates that do
not clearly fit into one of the established blazar subtypes, such as
BL Lac or FSRQ. In other words, these blazar candidates may have
characteristics that make it difficult to definitively classify them into a
specific blazar subtype. One often needs additional data and analysis
to determine the precise nature of these objects. In some cases, this
might prove to be an expensive and challenging task, especially when
dealing with sources that could potentially be of the BL Lac type,
which inherently have weak or no emission lines.

As an alternative approach, several authors have recently turned
to various machine learning (ML) algorithms to classify BCUs into
BL Lacs and FSRQs. For example, Cooper et al. (2023) used the
Multivariate Imputation by Chain Equations (MICE) and k-nearest
neighbours algorithms to initially fill in missing variables, such as
redshift and the highest energy, and subsequently classified AGNs
into either BL Lacs or FSRQs using multiple algorithms based
on the SuperLearner. In another study, Sahakyan, Vardanyan &
Khachatryan (2023) employed Artificial Neural Networks (ANNs),
Extreme Gradient Boosting (XGBOOST), and Light Gradient-
Boosting Machine (LIGHTGBM) algorithms to classify BCUs into
825 BL Lac candidates and 405 FSRQ candidates, along with 190
sources that remained without a clear prediction. Agarwal (2023) used
multiple supervised ML algorithms and classified a sample of 1115
BCUs into 610 BL Lac objects and 333 FSRQs. Additionally, Butter
et al. (2022) used Bayesian neural networks for the classification of
Fermi-LAT blazar candidates into BL Lacs and FSRQs while also
estimating associated uncertainties. In a separate study, Kovacevié
et al. (2020) employed a supervised ML method based on an ANN
on a sample of 1329 BCUs, predicting that 801 sources are BL
Lacs, 406 sources are FSRQs, and 122 sources remain unclassified.
Finally, Kang et al. (2019) employed supervised ML algorithms
to generate predictive models, classifying BCUs into 724 BL Lac-
type candidates, 332 FSRQ-type candidates, and 256 without a clear
prediction.

In this study, we use data from the fourth Fermi catalogue (4FGL;
Abdollahi et al. 2020) and employ ML-based classification methods
to distinguish between BCUs, classifying them as either BLLs or
FSRQs. The method majorly depends on using of smarter ways of
initializing weights and employing self-supervised learning. It has
been observed that from all the employed techniques, bias initializa-
tion with soft voting happens to perform the best while giving the
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accuracy of 93 per cent and macro average F'1 score of 0.914. Other
methods deliver a similar performance with accuracy ranging from
88.6 percent to 91.5 percent. The core advantage of our method,
in comparison to other available methods, lies in its simplicity,
facilitating easy deployment and acceleration of the inference speed.
Additionally, our approach emphasizes reproducibility, enabling the
replication of results, and allows for direct adoption in scenarios
involving bulk predictions. By utilizing a minimal set of features,
our method ensures the incorporation of all available sources from
the catalogue without compromise.

In this paper, we organize our content as follows: Section 2
introduces the data set and outlines our classification methods,
including both vanilla architectures and intelligent modifications,
as well as our training and testing strategies. Section 3 presents our
results and discusses their implications. Finally, in Section 4 we
outline our conclusions.

2 METHODOLOGY

2.1 Data collection and processing

In this study, we make use of Fermi’s fourth catalogue of AGN
data release 3 (4LAC-DR3;! Ajello et al. 2022), which is based
on data accumulated over 12 yr and contains over 6600 sources.
The catalogue comprises 1458 BL Lac objects, 792 FSRQs, and
1493 BCUs, which are shown in the sky map in Fig. 1. The
catalogue consists of 3407 sources, each defined by a total of 41
observational features. However, 35 features are provided without
any missing values. The feature ‘SED_class’ has the highest number
of missing values (989), while the ‘Counterpart_Catalog’ feature
has the least, with only 20 missing values. However, for this study
we only make use of clean samples [refer to Abdollahi et al.
(2020) for more information], hence reducing the sample size to
1335 BL Lac objects, 670 FSRQs, and 1115 BCUs, respectively.
Further, we observe that although considering all the features can
result in better results, it minimizes the number of samples for
which we can make predictions due to the missing values, and
imputation of it can result in artificial bias making things erroneous.
Hence, along with referring to important contributing features in
Agarwal (2023) and the availability of data for different features, we
proceed with seven features, namely ‘PL_Index, nu_syn, LP_Index,
Pivot_Energy, Frac_Variability, Variability_Index, and nuFnu_syn’.?
Next, the collected data are divided into train, test, and validation
sets in the ratio of 80:10:10. To have a fair evaluation of the proposed
methods, we ensure that the test data consist of data that have
never been seen by the algorithm previously. Further, all features
except PL_Index, LP_Index, and Frac_Variability underwent log
transformations, which ensures that the large values of parameters
do not explicitly distort the learning of the model.

2.2 Model architecture

The study broadly explores two different approaches: traditional
ANNSs and self-supervised learning. The former is divided into three
parts, primarily focused on various weight initialization strategies,

Uhttps://fermi.gsfc.nasa.gov/ssc/data/access/lat/4LACDR3/

2A description of the observed features is available in table Al of Ajello
et al. (2022), providing detailed information on the characteristics under
consideration.
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Figure 1. Sky map showing population of BL Lacs, FSRQs, and BCUs from Fermi/LAT recent catalogue of AGN 4FGL LAC-DR3.

and is elaborated as follows. The first and the best-performing archi-
tecture uses a bias-initialization technique to initialize the weights in
the final layer, a common technique for weight initialization when
dealing with imbalanced data sets. Since the proposed architecture
comprises only 1 hidden layer with 42 neurons, it has a significantly
lower number of parameters, making it computationally efficient.
In addition to the initialization, we also introduce an ensemble-
based soft voting approach for this architecture — after extensive
experimentation and saving the training weights at each epoch, we
retrieve the architecture’s weights from the 40th and 41st epochs to
create two distinct pseudo models. We then evaluate both models on
the test data, assigning a weight of 0.1 to the predictions from the
model corresponding to the 40th epoch and a weight of 0.9 to the
predictions from the 41st epoch. The final prediction is calculated as
the weighted sum of these predictions, rounded to the nearest whole
number. These weight values are hyperparameters tuned through a
trial-and-error method.

The remaining two initialization techniques are applied to an ANN
with 2 hidden layers containing 64 and 32 neurons, respectively, with
adropout (Srivastava et al. 2014) of 0.5 in between them. Making use
of dropout in the study, ensures that at any given point while training a
particular neuron will remain inactive with probability of 0.5, hence,
ensuring that there is not any overdependence on a particular neuron
thereby encouraging the generalizability of the model. The second
initialization technique is a greedy-based pretraining approach in a
supervised fashion. Here, initially we train the input layer without
considering the hidden layer. This provides us with an estimate
of the weights that would be best if there were no hidden layer.
Next, while keeping the input layer weights constant, we train the
algorithm again to estimate the weights of the neurons in the hidden
layer.

The third and final approach for initialization is again a greedy-
based approach; however, in this case we deal in an unsupervised
manner (Erhan et al. 2010). This is a widely used technique when
dealing with data having a large number of unlabelled data points.

MNRAS 528, 976-986 (2024)

While its purpose is to learn the data distribution for weight
initialization, there is no guarantee that this method will achieve
optimal performance, even when compared to its vanilla version.
We observe a similar behaviour when using an autoencoder-based
method to pretrain the network in an unsupervised fashion.

In summary, the first bias-based initialization technique is im-
plemented on a traditional ANN having 1 hidden layer with the
model having 42 neurons with a dropout of 0.5 and the other two
greedy-based approaches are applied to an ANN with 2 hidden layers
containing 64 and 32 neurons, respectively, with a dropout of 0.5 in
between them. As this is a binary classification task, the loss function
used for this model is ‘binary crossentropy’ with the activation
function being ‘sigmoid’ in the output layer. Using of sigmoid as
an activation function restricts the output between 0 and 1 allowing
us to use a single neuron in the output layer. In our specific case, we
represent ‘BL Lac’ by ‘0’ and ‘FSRQs’ by ‘1’. Hence, the more the
output is towards 1, the more confident is the algorithm in predicting
the corresponding input target as FSRQ, similar is the case with BL
Lac wherein the output has to be very close to 0.

The second major approach in this study is self-supervised
learning, where we employ pretext tasks such as autoencoders (Chen
etal. 2023) and contrastive classification (van den Oord, Li & Vinyals
2018; Henaff 2020; Liu et al. 2023). Though autoencoder is an
unsupervised algorithm, it has been widely used in a self-supervised
regime wherein the autoencoder is used to train the encoder to have
a meaningful representation of the data. This is known as the pretext
task which is not the primary task the model is aimed at, but helps
in generating a better understanding of the data for the downstream
tasks. Here, the encoder’s learned representations are fed as an input
to a classifier for the main downstream task of classification. For
our case, the encoder + decoder architecture consists of seven layers
with input and output layers having seven neurons, respectively.
Next, the remaining layers of the encoder consist of 128, 64, and 32
neurons, respectively. On the other hand, the decoder has a total of
2 layers prior to output with 64 and 128 neurons, respectively. As
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Figure 2. Confusion matrix on testing data for all the models with X axes denoting the predicted label and Y axes denoting the true label.
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Table 1. Performance summary: a comparison table between class wise Precision, Recall, F1 score, Accuracy, and AUC for all the models

employed in this study.

Model Accuracy BL Lac FSRQ AUC
Precision Recall F1 score  Precision Recall F1 score

Bias initialization with soft voting 0.930 0.938 0.965 0.951 0.909 0.847 0.877 0.949

Supervised greedy pretraining 0.915 0.963 0.915 0.939 0.818 0.915 0.864 0.956

Unsupervised greedy pretraining 0.886 0.941 0.894 0.917 0.773 0.864 0.816 0.956

SSL autoencoder pretext 0.891 0.941 0.901 0.921 0.785 0.864 0.823 0.949

SSL contrastive classification 0.886 0.941 0.894 0.917 0.773 0.864 0.816 0.951

this acts as a regression-based task wherein we need to reconstruct
the input the loss function used here is the ‘mean squared error’.
Further, the encoded representation having 32 neurons is directly
connected to the output layer making use of ‘softmax’ as an activation
function.

The final model that we discuss in this study is ‘contrastive classi-
fication’. Broadly this method leverages the concept of similarity and
dissimilarity between data samples. It aims to bring similar samples
closer in the feature space while pushing dissimilar samples apart. For
this particular case of classification, we create positive and negative
pairs of FSRQs and BL Lacs, where a pair of two FSRQs or two BL
Lacs is considered positive pair and a pair of two dissimilar objects
i.e. one FSRQ and one BL Lac is considered negative pair. The model
then tries to learn how to distinguish between two types of pairs as
the pretext task and while doing so it learns about the data which in
turn can be used in downstream task. To do so, we create positive
and negative pairs and then move ahead with creation of model, for
that we define two input layers having the number of neurons equal
to the feature size. Both input data samples are then passed through
a shared dense layer with 64 units and ReLU activation. Further, the
embeddings of the two samples are concatenated and a dense layer
with a sigmoid activation is used to predict if the pair is positive or
negative. As we now have the features extracted by the contrastive
learning model, we then feed it to our standard classifier having
connected the extracted features directly to the output layer.

In summary, we propose five different models — three involving
ANNSs and two which use self-supervised learning. The final class
prediction from each model is obtained by applying a threshold of 0.5
on the predicted probability, where all values above 0.5 are classified
as FSRQs(1) and those below are classified as BLLs(0).

2.3 Training and validation

The proposed algorithms are implemented using TensorFlow.? To
ensure the reproducibility of the achieved results, we fix a random
seed, hence irrespective of the number of times the algorithm is
implemented, the trained weights will remain the same. Next, to
avoid some over complication, we consider all the data points in a
batch while training as opposed to the standard mini-batch approach
to calculate the loss and accordingly optimize the model. One of the
major reasons behind having done this is the data set being heavily
imbalanced, considering a smaller batch size may result in all the
samples being of one single class and hence distorting the learning
process. Though this can be avoided by doing a batch normalization
or by smartly dealing with the sampling process, we prefer to go
with a simple method resulting in minimization of computational
requirements. Next, to optimize the algorithm we make use of

3https://www.tensorflow.org/
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‘Adam’ (Bae, Ryu & Shin 2019; Mehta, Paunwala & Vaidya 2019)
as an optimizer which is one of the majorly used optimizers in
the ML community due to obvious reasons. Note that, we do not
discuss the reasons in this study as there’s a large literature available
on the optimizer commenting about its features like incorporating
momentum along with being a variant of Adagrad, which ultimately
helps in quicker convergence.

One of the core advantages of our algorithm is the number of
parameters which is significantly less when compared to other
existing models making our model faster and easier to deploy
without compensating for the results. To account for rough estimate
on the speed of our algorithm relative to the other algorithms, we
calculate the number of floating point operations (FLOPs). FLOPs are
generally calculated based on the number of parameters in a neural
network model. Having fewer FLOPs is particularly advantageous
for accelerating the predictions, making it easy and efficient to use
in bulk. The number of FLOPs done while predicting the results is
672, which is significantly lower than Agarwal (2023) (5056). As a
result, the best-performing model is further deployed on Streamlit*
and Amazon AWS? so that a user can enter the values for all the
features and get a prediction along with the prediction probability
for the corresponding input.

Next, while training, all the models are trained for a maximum
of 1500 epochs with a stopping condition on validation accuracy,
ensuring that the model will stop its training if there’s no increase in
validation accuracy for 300 epochs. This introduction of stopping
criteria, along with the implemented dropout of 0.5 helps the
algorithm avoid overfitting and also avoid unnecessary computations
which would not improve the results.

3 RESULTS AND DISCUSSION

The proposed method is evaluated on the test sample that has never
been seen by the algorithms during its training. One of the major
reasons to have a completely independent test data is to avoid
any biases that would occur if the model had updated its weights
on the same data. The test data consist of 142 BL Lacs and 59
FSRQs that approximately comprise of 10 per cent of the labelled
data. The test data are randomly chosen from the labelled data such
that it contains all the possible input distributions in a generalized
fashion.

For each model, we present a corresponding confusion matrix
shown in Fig. 2. As seen in the figure, the bias initialization with
soft voting corresponds to lowest misclassification rate. Though,
the number of FSRQs predicted correctly by the algorithm is the
lowest compared to other models, the numbers just differ by a
few samples, and hence this does not prove to be a barrier. Next,

“https://streamlit.io/
Shttps://aws.amazon.com/
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Figure 3. ROC curves along with corresponding AUC values. The ROC curve is plotted between the False Positive Rate and True Positive Rate.
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Table 2. Performance summary: a comparison table between macro and weighted averages for all the models

employed in this study.

Model Macro average Weighted average
Precision Recall F1score Precision  Recall F1 score
Bias initialization with soft voting 0.924 0.906 0.914 0.930 0.930 0.930
Supervised greedy pretraining 0.891 0.915 0.901 0.920 0.915 0.917
Unsupervised greedy pretraining 0.857 0.879 0.866 0.891 0.886 0.887
SSL autoencoder pretext 0.863 0.883 0.872 0.895 0.891 0.892
SSL contrastive classification 0.857 0.879 0.866 0.891 0.886 0.887

to have an appropriate metric for comparison, with the help of
confusion matrix, we calculate various parameters such as Precision,
Recall, F1 score, and Accuracy as shown in Table 1. As we are
doing a binary classification, we also calculate the area under the
curve (AUC) score corresponding to every model as seen in the
last column of Table 1. To calculate AUC score, we first plot the
receiver operating characteristic (ROC) curve that is a plot between
the ‘True Positive Rate’ and the ‘False Positive Rate’ as seen in
Fig. 3. Next, we calculate the area under curve to identify the AUC
value. Ideally, the more close the value is to 1, the better the score
is. Though from AUC score it seems that greedy pretraining is an
optimal technique to proceed with, the relative difference in the
score is minor compared to the misclassification error. Additionally,
in the context of imbalanced data classification, F1 score is a much
better metric than AUC. To validate our claim, we further calculate
the macro and weighted averages of all the metrics as shown in
Table 2. The major difference between macro and weighted average
is that macro average is the arithmetic mean of individual scores,
while weighted average includes the individual sample sizes. Macro
average is calculated using the unweighted mean, which treats all
classes equally regardless of their support values. This can penalize
the model if the performance in minority classes is poor. On the
other hand weighted average takes into account the number of true
instances in each class to cope with class imbalance. As seen from
the table, both the macro and weighted average F'1 scores is better for
the bias initialization with soft voting. Thus considering its lowest
misclassification rate and highest weighted and macro F1 scores, the
‘bias initialization with soft voting” model turns out to be the best
one.

Next, we also plot the histogram corresponding to the output value
given by the model on the test data. This helps in identifying if the
models are overconfident in their predictions by simply comparing its
histogram with the misclassification rate. As in our case BL Lacs are
denoted by 0 and FSRQs are denoted by 1, the magnitude of the bars
close to O relates to the algorithm being confident about the target
being BL Lac, similar to the case with FSRQs wherein we focus on
magnitudes of the bars close to 1. As seen in Fig. 4(a), compared to its
counterparts, model does not give a confident prediction for a large
number of samples. It is highly probable that most of the FSRQs
misclassified as BL Lacs will have a prediction value around 0.5,
and the same is expected to be the case for BL Lacs misclassified as
FSRQs. On the other hand for all the other algorithms particularly for
the self-supervised ones, we see a very high magnitude bar around
the value O, indicating that model is confident about most of the
samples being BL Lacs, and the same has been observed from the
confusion matrix. However, an important point to note here is that,
these algorithms tend to classify a lot of BLLs as FSRQs and hence
being overconfident about wrong predictions. Thus, even though
the flatter distribution in Fig. 4(a) might seem counterintuitive to
well separated categories, it reflects the fact that this model is not
disproportionately biased to either class. The comparatively higher
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peaks around O for models (Fig. 4c—e) indicate that they are biased
towards BLLs, since they identify a considerably lesser number of
BLLs correctly than Fig. 4(a).

In addition to its optimal performance, one of the major advantages
of our ‘Bias Initialization with Soft Voting Neural Network’ is the
model’s parameter count, as discussed in the previous section. Re-
cently, numerous studies have explored similar approaches (Agarwal
2023; Cooper et al. 2023; Sahakyan, Vardanyan & Khachatryan
2023), employing a large number of features and are thus, limited
to a small number of samples, due to a high percentage of missing
values in the catalogue. On the other hand, if the algorithms estimate
these missing parameters e.g. redshift before classification, then their
results will be heavily biased based on the imputation technique used.
In contrast, Agarwal’s optimal model shares the same number of
features as ours. However, the considered model in the work requires
approximately seven times more FLOPs compared to the presented
model. This computational efficiency enhances the user experience
when using our tool without compromising on results. One can find
a link to the web app in the DATA AVAILABILITY section.

We make use of each model to make predictions for BCUs.
The histograms can be seen in Fig. 5. Out of 1115 BCU samples,
the optimal algorithm (‘bias initialization with soft voting’) of ours
predicts that there are 820 BL Lacs and 295 FSRQs, the list of which
is made available in our GitHub repository. This number can be
considered approximate due to the uncertainty and errors associated
with every ML model. One of the other supporting evidence for
these numbers is the redshift associated with the BCU samples.
In our previous paper, we observed that a significant number of
BCUs in the catalogue have a lower redshift (refer to figs 4 and 5
in Gharat, Borthakur & Bhatta 2023), indicating that there would be
more BL Lacs compared to FSRQs, which perfectly aligns with the
claim made in this study. Table 3 presents the predictive statistics for
the unclassified BCUs according to each model. Notably, there is a
separate consensus between the greedy pretraining approaches and
between the self-supervised learning techniques, with each of the
five models concurring that no less than 60 per cent of these samples
are likely BLLs.

We observe a significant dominance of BL Lacs in the resulting
sample, making up approximately 73 per cent, which is consistent
with the observation in the 4LAC catalogue, where the number of
BL Lacs is nearly double that of FSRQs. This dominance is further
supported by the challenges posed by a large number of BL Lac
objects displaying weak or no emission lines, making the detection
of their optical counterpart information difficult and classification a
complex task. Consequently, it is reasonable to infer that a significant
fraction of the BCUs in the Fermi/LAT catalogue are highly likely to
be BL Lac objects. Also, it is important to note that considering the

Shttps://github.com/abhimanyu9 1 1/bcu-classification/tree/main/
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Figure 4. Distribution of predicted output on test data. Here, ‘0’ denotes the BL Lac and ‘1’ denotes the FSRQ. The closer the value is to these extremes, the

more confident the model is in its prediction.
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Figure 5. Distribution of predicted output on BCU sources. Here, ‘0’ denotes the BL Lac and ‘1’ denotes the FSRQ. Again, the closer the value is to these
extremes, the more confident the model is in its prediction.
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Table 3. Number of BLLs and FSRQs predicted for the 1115 BCUs by different models.

Model

Number of BLLs predicted

Number of FSRQs predicted

Bias initialization with soft voting
Supervised greedy pretraining
Unsupervised greedy pretraining
SSL autoencoder pretext

SSL contrastive classification

890 295
691 424
691 424
754 361
757 358

985

0201 ] BL Lac
018/ T FSRQ

0.08

Fraction of Sources

0.05

0.03 1

0.00 — T T T T T T | .
14 16 18 20 22 24 26 28 30

Photon Index

(a) Distribution of Photon Indices in the Predicted Sample

Photon Index

log(Pivot Energy)

(b) Photon Index Distribution across Logarithmic Pivot Energies in the
predicted Sample

Figure 6. The dichotomy between BL Lacs and FSRQs is evident in their distribution within the predicted sample.

binary nature of the classification, limited to BL Lacs and FSRQs,
and excluding other potential classes such as Seyferts, radio galaxies,
and other AGN’s — constituting only a small fraction of the sample —
we anticipate that less than 3 per cent of non-blazar AGN subclasses
could potentially introduce contamination in the BCU sample.

To explain the apparent dichotomy between BL Lacs and FSRQs,
the intrinsic difference in the nature of the accretion disc and
physical origins of gamma-ray emissions in BL Lacs and FSRQs
may contribute to their distinct gamma-ray properties, such as the
larger gamma-ray luminosity of FSRQs and the harder gamma-ray
spectral characteristics of BL Lacs. For instance, BL Lacs can have
a radiatively inefficient accretion flow and be more magnetically
dominated, resulting in a lower mass accretion rate compared to
FSRQs (e.g. Ghisellini, Maraschi & Tavecchio 2009; Ghisellini
et al. 2011; Mondal & Mukhopadhyay 2019). Similarly, the absence
of circumnuclear gas near the central engine, as indicated by the
featureless optical spectra of BL Lacs, suggests that the origin of
gamma-ray emission in the sources can predominantly be ascribed
to SSC emission (e.g. Mastichiadis & Kirk 1997). On the other hand,
studies of the broad-band SED of FSRQs suggest that gamma-ray
emission in FSRQs is mainly contributed by External-Compton (EC)
processes ( see e.g. Hayashida et al. 2015, and reference therein).

To ensure the model’s consistency in accordance with the char-
acteristic features of the two classes, we plotted the distribution of
the photon index. We observed that the BL Lacs in the predicted
sample exhibit a relatively harder photon index compared to FSRQs,
as illustrated in Fig. 6(a) (see also figs 1 and 3 in Ajello et al. 2022).
Additionally, we also plotted a graph between photon index and log
of pivot energy and observed results align with the expected trend,
positioning BL Lacs in the upper left of the anticorrelation trend, as
seen in Fig. 6(b) (see also fig. 2 in Kang et al. 2019). The results
from the study can be further verified and refined through dedicated
multiwavelength observations, involving telescopes ranging from

radio to TeV. Moreover, as BL Lacs represent the most extreme
class of AGNss, this sample can serve as the target sample for future
ground-based TeV and PeV telescopes.

4 CONCLUSION

The recent catalogue from the Fermi/LAT gamma-ray telescope
contains a large number of AGN sources that require decisive
classification. This is because classification using gamma-ray data
alone is not always possible. In this study, we employ multiple
algorithms to classify blazars of unknown class into BL Lacs and
FSRQs. The proposed models exhibit simplicity in their nature, with
their distinctiveness stemming from the fine-tuning of the method
through appropriate initialization and the incorporation of soft voting.
Additionally, we delve into a couple of self-supervised algorithms
in their vanilla form to assess their capabilities. ‘Bias initialization
with soft voting” emerges as the best-performing model in our case.
The algorithm’s ability to make a larger number of predictions can
be attributed to the minimal number of features it utilizes, which
stands as a key factor. Furthermore, our study places emphasis on
maintaining a minimal number of parameters while still delivering
strong performance, which proves to be a pivotal feature. This enables
us to deploy the model in various scenarios.
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Space Flight Center. Following the reproducibility and open source
standards followed by the ML community, we make all our codes
public that can be accessed through our Github repository (https:
//github.com/abhimanyu911/bcu-classification). Further, to have a
comfortable experience with our method, the best-performing model
is deployed on AWS (http://13.239.10.157:8501/) and Streamlit
(https://bcu-classification-ml.streamlit.app/). Note that the AWS app
may get deactivated after the expiry of credits, in such cases
we recommend a user to make use of Streamlit. In case of any
issues, a docker image can be provided on reasonable request to
sarveshgharat19 @gmail.com.

REFERENCES

Abdollahi S. et al., 2020, ApJS, 247, 33

Agarwal A., 2023, AplJ, 946, 109

Ajello M. et al., 2022, ApJS, 263, 24

Atwood W. B. et al., 2009, ApJ, 697, 1071

Bae K., Ryu H., Shin H., 2019, preprint (arXiv:1911.00289)

Bhatta G., 2021, ApJ, 923, 7

Bhatta G., Dhital N., 2020, ApJ, 891, 120

Bhatta G., Mohorian M., Bilinsky I., 2018, A&A, 619, A93

Btazejowski M., Sikora M., Moderski R., Madejski G. M., 2000, ApJ, 545,
107

Bloom S. D., Marscher A. P., 1996, ApJ, 461, 657

Bottcher M., 2019, Galaxies, 7, 20

Butter A., Finke T., Keil F., Krimer M., Manconi S., 2022, J. Cosmol.
Astropart. Phys., 2022, 023

Chen X. et al., 2023, Int. J. Comput. Vis., 1

Cooper N., Dainotti M. G., Narendra A., Liodakis I., Bogdan M., 2023,
MNRAS, 525, 1731

Dermer C. D., Schlickeiser R., 1993, ApJ, 416, 458

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

Erhan D., Courville A., Bengio Y., Vincent P., 2010, in Yee Whye T., Mike
T., Whye Y., eds, Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics. PMLR, p. 201

Fossati G., Maraschi L., Celotti A., Comastri A., Ghisellini G., 1998,
MNRAS, 299, 433

Gharat S., Borthakur A., Bhatta G., 2024, MNRAS, 527, 6198

Ghisellini G., Maraschi L., Tavecchio F., 2009, MNRAS, 396, L105

Ghisellini G., Tavecchio F., Foschini L., Ghirlanda G., 2011, MNRAS, 414,
2674

Ghisellini G., Righi C., Costamante L., Tavecchio F., 2017, MNRAS, 469,
255

Hayashida M. et al., 2015, ApJ, 807, 79

Henaff O., 2020, in International Conference on Machine Learning. PMLR,
p- 4182

Jorstad S. G. et al., 2017, ApJ, 846, 98

Kang S.-J., Li E., Ou W., Zhu K., Fan J.-H., Wu Q., Yin Y., 2019, ApJ, 887,
134

Kovacevi¢ M., Chiaro G., Cutini S., Tosti G., 2020, MNRAS, 493, 1926

Liu H., Jiang X., Li X., Guo A., Hu Y., Jiang D., Ren B., 2023, in Proceedings
of the AAAI Conference on Artificial Intelligence. p. 1649

Maraschi L., Ghisellini G., Celotti A., 1992, ApJ, 397, L5

Mastichiadis A., Kirk J. G., 1997, A&A, 320, 19

Mehta S., Paunwala C., Vaidya B., 2019, in 2019 International Conference
on Intelligent Computing and Control Systems (ICCS). IEEE, p. 1293

Mondal T., Mukhopadhyay B., 2019, MNRAS, 486, 3465

Sahakyan N., Vardanyan V., Khachatryan M., 2023, MNRAS, 519, 3000

Sikora M., Begelman M. C., Rees M. J., 1994, ApJ, 421, 153

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.,
2014, J. Mach. Learn. Res., 15, 1929

Urry C. M., Padovani P., 1995, PASP, 107, 803

van den Oord A., Li Y., Vinyals O., 2018, preprint (arXiv:1807.03748)

This paper has been typeset from a TEX/IZTEX file prepared by the author.

© The Author(s) 2024.

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

MNRAS 528, 976-986 (2024)

$20z Aeniga4 €0 uo 1senb Aq 0Z2Z1.S./9.6/1/82S/20ne/seiuw/woo dno olwapese//:sdiy Wwoll papeojumod]


https://github.com/abhimanyu911/bcu-classification
http://13.239.10.157:8501/
https://bcu-classification-ml.streamlit.app/
http://dx.doi.org/10.3847/1538-4365/ab6bcb
http://dx.doi.org/10.3847/1538-4357/acbdfa
http://dx.doi.org/10.3847/1538-4365/ac9523
http://dx.doi.org/10.1088/0004-637X/697/2/1071
http://arxiv.org/abs/1911.00289
http://dx.doi.org/10.3847/1538-4357/ac2819
http://dx.doi.org/10.3847/1538-4357/ab7455
http://dx.doi.org/10.1051/0004-6361/201833628
http://dx.doi.org/10.1086/317791
http://dx.doi.org/10.1086/177092
http://dx.doi.org/10.1093/mnras/stad2193
http://dx.doi.org/10.1086/173251
http://dx.doi.org/10.1046/j.1365-8711.1998.01828.x
http://dx.doi.org/10.1093/mnras/stad3622
http://dx.doi.org/10.1111/j.1745-3933.2009.00673.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18578.x
http://dx.doi.org/10.1093/mnras/stx806
http://dx.doi.org/10.1088/0004-637X/807/1/79
http://dx.doi.org/10.3847/1538-4357/aa8407
http://dx.doi.org/10.3847/1538-4357/ab558b
http://dx.doi.org/10.1093/mnras/staa394
http://dx.doi.org/10.1086/186531
http://dx.doi.org/10.48550/arXiv.astro-ph/9610058
http://dx.doi.org/10.1093/mnras/stz1062
http://dx.doi.org/10.1093/mnras/stac3701
http://dx.doi.org/10.1086/173633
http://dx.doi.org/10.1086/133630
http://arxiv.org/abs/1807.03748
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 METHODOLOGY
	3 RESULTS AND DISCUSSION
	4 CONCLUSION
	ACKNOWLEDGEMENT
	DATA AVAILABILITY
	REFERENCES

