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A B S T R A C T 

Machine learning has emerged as a powerful tool in the field of gamma-ray astrophysics. The algorithms can distinguish between 

different source types, such as blazars and pulsars, and help unco v er new insights into the high-energy universe. The Large 
Area Telescope onboard the Fermi gamma-ray telescope has significantly advanced our understanding of the Universe. The 
instrument has detected a large number of gamma-ray-emitting sources, among which a significant number of objects have 
been identified as active galactic nuclei. The sample is primarily composed of blazars; however, more than one-third of these 
sources are either of an unknown class or lack a definite association with a low-energy counterpart. In this work, we employ 

multiple machine learning algorithms to classify the sources based on their other physical properties. In particular, we utilized 

smart initialization techniques and self-supervised learning for classifying blazars into BL Lacertae (BL Lac, also BLL) objects 
and flat-spectrum radio quasars (FSRQs). The core advantage of the algorithm is its simplicity, usage of minimum number of 
features and easy deployment due to lesser number of parameters without compromising on the performance along with increase 
in inference speed (at least seven times more than existing algorithms). As a result, the best-performing model is deployed on 

multiple platforms so that any user irrespective of their coding background can use the tool. The model predicts that out of 
the 1115 sources of uncertain type in the 4FGL-DR3 catalogue, 820 can be classified as BL Lacs and 295 can be classified as 
FSRQs. 

Key words: radiation mechanisms: non-thermal – methods: observational – methods: statistical – galaxies: active – BL Lacertae 
objects: general – quasars: supermassive black holes. 
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 I N T RO D U C T I O N  

lazars, belonging to the class of active galactic nuclei (AGNs),
tand out as some of the most luminous and exceptionally variable
ources in the Universe. These sources are recognized for their
igh luminosity, broad-spectrum emissions, and significant rapid
ariability across a wide range of the electromagnetic spectrum (see
.g. Bhatta, Mohorian & Bilinsky 2018 ; Bhatta & Dhital 2020 ; Bhatta
021 ). These exceptional characteristics are frequently associated
ith the emission boosted by Doppler effects from the relativistic
utflows originating near the central engine (Urry & P ado vani 1995 ;
orstad et al. 2017 ). Conventionally, these objects are typically
ivided into two main groups: BL Lacertae (BL Lacs) and flat-
pectrum radio quasars (FSRQs). 

The primary distinction between these two categories lies in the
act that BL Lacs typically display either no or very faint emission
ine spectra, whereas FSRQs commonly exhibit broad emission lines
 E-mail: g.bhatta@ia.uz.zgora.pl 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
nd their synchrotron peak is at lower frequencies. While FSRQs
re more powerful sources, BL Lacs belong to an extreme class
haracterized by an excess of high-energy emissions, ranging from
ard X-rays to TeV energies. In leptonic models of blazar, this
xcess arises from synchrotron and inverse-Compton (IC) processes.
heir seemingly low luminosity may be attributed to the absence of
trong circumnuclear photon fields and relatively low accretion rates
Ghisellini et al. 2011 ). 

Blazars are known for emitting non-thermal radiation across a
ide spectrum, spanning from radio waves to TeV gamma-rays.
he spectral energy distributions (SEDs) of blazars exhibit two
istinct peaks. The first peak, observed in the infrared to soft X-
ay energy range, originates from synchrotron emission. In contrast,
he second peak, situated in the hard X-ray to gamma-ray region, is
ssociated with IC radiation, as per the leptonic model (see B ̈ottcher
019 , for a recent re vie w). The photons involved in IC scattering
an either arise from the same group of electrons responsible for
enerating the synchrotron peak, as explained by the synchrotron
elf-Compton (SSC) model (Maraschi, Ghisellini & Celotti 1992 ;
loom & Marscher 1996 ), or they can originate from external

ources, including, but not limited to, the accretion disc (Dermer &
© The Author(s) 2024. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-0705-6619
http://orcid.org/0000-0003-4845-7141
http://orcid.org/0000-0001-5773-189X
mailto:g.bhatta@ia.uz.zgora.pl
https://creativecommons.org/licenses/by/4.0/


Blazar classification 977 

S
1

i  

F
g
s
p  

c
o
t
F
(

c  

r  

T
s
c
n
F
c
n  

B  

c
s
t  

m  

d  

w

t
B  

M
n
r
i
o
K
E
B
8
s
m
B  

e  

F
e  

e  

o  

L
F
t
t
p

 

A
t
F  

i
b
t  

a  

m
8  

i
f
A
r
i  

o
t

 

i
i
a  

r
o

2

2

I  

d  

o  

T
1  

c  

o  

a  

o
h  

w  

(  

1
F
r  

w  

i  

H
A  

p  

P
N  

s  

m  

n
e  

t
d

2

T
A
p

1 https:// fermi.gsfc.nasa.gov/ ssc/ data/ access/ lat/ 4LACDR3/ 
2 A description of the observed features is available in table A1 of Ajello 
et al. ( 2022 ), providing detailed information on the characteristics under 
consideration. 
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chlickeiser 1993 ), the broad-line region (Sikora, Begelman & Rees 
994 ), or the dust torus (Bła ̇zejowski et al. 2000 ). 
An alternative approach to categorizing blazars involves examin- 

ng their SEDs and considering the synchrotron peak frequency ( νs ).
ollowing this approach, blazars can be classified into three cate- 
ories: high-synchrotron peaked (HSP; νs > 10 15 Hz), intermediate- 
ynchrotron peaked (ISP; 10 14 < νs < 10 15 Hz), or low-synchrotron 
eaked (LSP; νs < 10 14 Hz) blazars. It is noteworthy that, in this
lassification approach, FSRQs primarily fall under the category 
f LSP. In the unifying scheme known as the blazar sequence, 
he bolometric luminosity decreases as the sources transition from 

SRQs to HSP sources, whereas gamma-ray emissions increase 
Fossati et al. 1998 ; Ghisellini et al. 2017 ). 

The Fermi Large Area Telescope (LAT), in operation since 2008, 
onducts a continuous surv e y of the entire sky, identifying gamma-
ay sources within the energy range spanning from tens of MeV to the
eV range (Atwood et al. 2009 ). Among the extragalactic gamma-ray 
ources observed by the Fermi gamma-ray space telescope, blazars 
onstitute the largest population (Abdollahi et al. 2020 ). A significant 
umber, roughly one-third, of the blazar candidates identified by 
ermi -LAT up to this point belong to uncertain category. Blazar 
andidates of uncertain type (BCU) are blazar candidates that do 
ot clearly fit into one of the established blazar subtypes, such as
L Lac or FSRQ. In other words, these blazar candidates may have
haracteristics that make it difficult to definitively classify them into a 
pecific blazar subtype. One often needs additional data and analysis 
o determine the precise nature of these objects. In some cases, this
ight pro v e to be an e xpensiv e and challenging task, especially when

ealing with sources that could potentially be of the BL Lac type,
hich inherently have weak or no emission lines. 
As an alternative approach, several authors have recently turned 

o various machine learning (ML) algorithms to classify BCUs into 
L Lacs and FSRQs. For example, Cooper et al. ( 2023 ) used the
ulti v ariate Imputation by Chain Equations (MICE) and k -nearest 

eighbours algorithms to initially fill in missing variables, such as 
edshift and the highest energy, and subsequently classified AGNs 
nto either BL Lacs or FSRQs using multiple algorithms based 
n the SuperLearner. In another study, Sahakyan, Vardanyan & 

hachatryan ( 2023 ) employed Artificial Neural Networks (ANNs), 
xtreme Gradient Boosting (XGBOOST), and Light Gradient- 
oosting Machine (LIGHTGBM) algorithms to classify BCUs into 
25 BL Lac candidates and 405 FSRQ candidates, along with 190 
ources that remained without a clear prediction.Agarwal ( 2023 ) used 
ultiple supervised ML algorithms and classified a sample of 1115 
CUs into 610 BL Lac objects and 333 FSRQs. Additionally, Butter
t al. ( 2022 ) used Bayesian neural networks for the classification of
ermi -LAT blazar candidates into BL Lacs and FSRQs while also 
stimating associated uncertainties. In a separate study, Kov a ̌ce vi ́c
t al. ( 2020 ) employed a supervised ML method based on an ANN
n a sample of 1329 BCUs, predicting that 801 sources are BL
acs, 406 sources are FSRQs, and 122 sources remain unclassified. 
inally, Kang et al. ( 2019 ) employed supervised ML algorithms 

o generate predictive models, classifying BCUs into 724 BL Lac- 
ype candidates, 332 FSRQ-type candidates, and 256 without a clear 
rediction. 
In this study, we use data from the fourth Fermi catalogue (4FGL;

bdollahi et al. 2020 ) and employ ML-based classification methods 
o distinguish between BCUs, classifying them as either BLLs or 
SRQs. The method majorly depends on using of smarter ways of

nitializing weights and employing self-supervised learning. It has 
een observed that from all the employed techniques, bias initializa- 
ion with soft voting happens to perform the best while giving the
ccuracy of 93 per cent and macro average F 1 score of 0.914. Other
ethods deliver a similar performance with accuracy ranging from 

8.6 per cent to 91.5 per cent. The core advantage of our method,
n comparison to other available methods, lies in its simplicity, 
acilitating easy deployment and acceleration of the inference speed. 
dditionally, our approach emphasizes reproducibility, enabling the 

eplication of results, and allows for direct adoption in scenarios 
nv olving b ulk predictions. By utilizing a minimal set of features,
ur method ensures the incorporation of all available sources from 

he catalogue without compromise. 
In this paper, we organize our content as follows: Section 2

ntroduces the data set and outlines our classification methods, 
ncluding both vanilla architectures and intelligent modifications, 
s well as our training and testing strategies. Section 3 presents our
esults and discusses their implications. Finally, in Section 4 we 
utline our conclusions. 

 M E T H O D O L O G Y  

.1 Data collection and processing 

n this study, we make use of Fermi ’s fourth catalogue of AGN
ata release 3 (4LAC-DR3; 1 Ajello et al. 2022 ), which is based
n data accumulated o v er 12 yr and contains o v er 6600 sources.
he catalogue comprises 1458 BL Lac objects, 792 FSRQs, and 
493 BCUs, which are shown in the sky map in Fig. 1 . The
atalogue consists of 3407 sources, each defined by a total of 41
bserv ational features. Ho we v er, 35 features are pro vided without
ny missing values. The feature ‘SED class’ has the highest number
f missing values (989), while the ‘Counterpart Catalog’ feature 
as the least, with only 20 missing v alues. Ho we ver, for this study
e only make use of clean samples [refer to Abdollahi et al.

 2020 ) for more information], hence reducing the sample size to
335 BL Lac objects, 670 FSRQs, and 1115 BCUs, respectively. 
urther, we observe that although considering all the features can 
esult in better results, it minimizes the number of samples for
hich we can make predictions due to the missing values, and

mputation of it can result in artificial bias making things erroneous.
ence, along with referring to important contributing features in 
garwal ( 2023 ) and the availability of data for different features, we
roceed with seven features, namely ‘PL Index, nu syn, LP Index,
ivot Energy, Frac V ariability, V ariability Index, and nuFnu syn’. 2 

ext, the collected data are divided into train, test, and validation
ets in the ratio of 80:10:10. To have a fair e v aluation of the proposed
ethods, we ensure that the test data consist of data that have

ever been seen by the algorithm previously. Further, all features 
 xcept PL Inde x, LP Inde x, and Frac Variability underwent log
ransformations, which ensures that the large values of parameters 
o not explicitly distort the learning of the model. 

.2 Model ar chitectur e 

he study broadly explores two different approaches: traditional 
NNs and self-supervised learning. The former is divided into three 
arts, primarily focused on various weight initialization strategies, 
MNRAS 528, 976–986 (2024) 
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Figure 1. Sky map showing population of BL Lacs, FSRQs, and BCUs from Fermi /LAT recent catalogue of AGN 4FGL LAC-DR3. 
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nd is elaborated as follows. The first and the best-performing archi-
ecture uses a bias-initialization technique to initialize the weights in
he final layer, a common technique for weight initialization when
ealing with imbalanced data sets. Since the proposed architecture
omprises only 1 hidden layer with 42 neurons, it has a significantly
ower number of parameters, making it computationally efficient.
n addition to the initialization, we also introduce an ensemble-
ased soft voting approach for this architecture – after e xtensiv e
xperimentation and saving the training weights at each epoch, we
etrieve the architecture’s weights from the 40th and 41st epochs to
reate two distinct pseudo models. We then e v aluate both models on
he test data, assigning a weight of 0.1 to the predictions from the
odel corresponding to the 40th epoch and a weight of 0.9 to the

redictions from the 41st epoch. The final prediction is calculated as
he weighted sum of these predictions, rounded to the nearest whole
umber. These weight values are hyperparameters tuned through a
rial-and-error method. 

The remaining two initialization techniques are applied to an ANN
ith 2 hidden layers containing 64 and 32 neurons, respectively, with
 dropout (Sri v astav a et al. 2014 ) of 0.5 in between them. Making use
f dropout in the study, ensures that at any given point while training a
articular neuron will remain inactive with probability of 0.5, hence,
nsuring that there is not any overdependence on a particular neuron
hereby encouraging the generalizability of the model. The second
nitialization technique is a greedy-based pretraining approach in a
upervised fashion. Here, initially we train the input layer without
onsidering the hidden layer. This provides us with an estimate
f the weights that would be best if there were no hidden layer.
ext, while keeping the input layer weights constant, we train the

lgorithm again to estimate the weights of the neurons in the hidden
ayer. 

The third and final approach for initialization is again a greedy-
ased approach; ho we ver, in this case we deal in an unsupervised
anner (Erhan et al. 2010 ). This is a widely used technique when

ealing with data having a large number of unlabelled data points.
NRAS 528, 976–986 (2024) 
hile its purpose is to learn the data distribution for weight
nitialization, there is no guarantee that this method will achieve
ptimal performance, even when compared to its vanilla version.
e observe a similar behaviour when using an autoencoder-based
ethod to pretrain the network in an unsupervised fashion. 
In summary, the first bias-based initialization technique is im-

lemented on a traditional ANN having 1 hidden layer with the
odel having 42 neurons with a dropout of 0.5 and the other two

reedy-based approaches are applied to an ANN with 2 hidden layers
ontaining 64 and 32 neurons, respectively, with a dropout of 0.5 in
etween them. As this is a binary classification task, the loss function
sed for this model is ‘binary crossentropy’ with the acti v ation
unction being ‘sigmoid’ in the output layer. Using of sigmoid as
n acti v ation function restricts the output between 0 and 1 allowing
s to use a single neuron in the output layer. In our specific case, we
epresent ‘BL Lac’ by ‘0’ and ‘FSRQs’ by ‘1’. Hence, the more the
utput is towards 1, the more confident is the algorithm in predicting
he corresponding input target as FSRQ, similar is the case with BL
ac wherein the output has to be very close to 0. 
The second major approach in this study is self-supervised

earning, where we employ pretext tasks such as autoencoders (Chen
t al. 2023 ) and contrastive classification (van den Oord, Li & Vinyals
018 ; Henaff 2020 ; Liu et al. 2023 ). Though autoencoder is an
nsupervised algorithm, it has been widely used in a self-supervised
egime wherein the autoencoder is used to train the encoder to have
 meaningful representation of the data. This is known as the pretext
ask which is not the primary task the model is aimed at, but helps
n generating a better understanding of the data for the downstream
asks. Here, the encoder’s learned representations are fed as an input
o a classifier for the main downstream task of classification. For
ur case, the encoder + decoder architecture consists of seven layers
ith input and output layers having seven neurons, respectively.
ext, the remaining layers of the encoder consist of 128, 64, and 32
eurons, respectively. On the other hand, the decoder has a total of
 layers prior to output with 64 and 128 neurons, respectively. As
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Figure 2. Confusion matrix on testing data for all the models with X axes denoting the predicted label and Y axes denoting the true label. 
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Table 1. Performance summary: a comparison table between class wise Precision, Recall, F 1 score, Accuracy, and AUC for all the models 
employed in this study. 

Model Accuracy BL Lac FSRQ AUC 

Precision Recall F 1 score Precision Recall F 1 score 

Bias initialization with soft voting 0.930 0.938 0.965 0.951 0.909 0.847 0.877 0.949 
Supervised greedy pretraining 0.915 0.963 0.915 0.939 0.818 0.915 0.864 0.956 
Unsupervised greedy pretraining 0.886 0.941 0.894 0.917 0.773 0.864 0.816 0.956 
SSL autoencoder pretext 0.891 0.941 0.901 0.921 0.785 0.864 0.823 0.949 
SSL contrastive classification 0.886 0.941 0.894 0.917 0.773 0.864 0.816 0.951 
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his acts as a regression-based task wherein we need to reconstruct
he input the loss function used here is the ‘mean squared error’.
urther, the encoded representation having 32 neurons is directly
onnected to the output layer making use of ‘softmax’ as an acti v ation
unction. 

The final model that we discuss in this study is ‘contrastive classi-
cation’. Broadly this method leverages the concept of similarity and
issimilarity between data samples. It aims to bring similar samples
loser in the feature space while pushing dissimilar samples apart. For
his particular case of classification, we create positive and negative
airs of FSRQs and BL Lacs, where a pair of two FSRQs or two BL
acs is considered positive pair and a pair of two dissimilar objects

.e. one FSRQ and one BL Lac is considered ne gativ e pair. The model
hen tries to learn how to distinguish between two types of pairs as
he pretext task and while doing so it learns about the data which in
urn can be used in downstream task. To do so, we create positive
nd ne gativ e pairs and then mo v e ahead with creation of model, for
hat we define two input layers having the number of neurons equal
o the feature size. Both input data samples are then passed through
 shared dense layer with 64 units and ReLU acti v ation. Further, the
mbeddings of the two samples are concatenated and a dense layer
ith a sigmoid acti v ation is used to predict if the pair is positive or
e gativ e. As we now have the features extracted by the contrastive
earning model, we then feed it to our standard classifier having
onnected the extracted features directly to the output layer. 

In summary, we propose five different models – three involving
NNs and two which use self-supervised learning. The final class
rediction from each model is obtained by applying a threshold of 0.5
n the predicted probability, where all values abo v e 0.5 are classified
s FSRQs(1) and those below are classified as BLLs(0). 

.3 Training and validation 

he proposed algorithms are implemented using TensorFlow. 3 To
nsure the reproducibility of the achieved results, we fix a random
eed, hence irrespective of the number of times the algorithm is
mplemented, the trained weights will remain the same. Next, to
 v oid some o v er complication, we consider all the data points in a
atch while training as opposed to the standard mini-batch approach
o calculate the loss and accordingly optimize the model. One of the
ajor reasons behind having done this is the data set being heavily

mbalanced, considering a smaller batch size may result in all the
amples being of one single class and hence distorting the learning
rocess. Though this can be a v oided by doing a batch normalization
r by smartly dealing with the sampling process, we prefer to go
ith a simple method resulting in minimization of computational

equirements. Next, to optimize the algorithm we make use of
NRAS 528, 976–986 (2024) 

 https://www .tensorflow .org/

4

5

Adam’ (Bae, Ryu & Shin 2019 ; Mehta, Paunwala & Vaidya 2019 )
s an optimizer which is one of the majorly used optimizers in
he ML community due to obvious reasons. Note that, we do not
iscuss the reasons in this study as there’s a large literature available
n the optimizer commenting about its features like incorporating
omentum along with being a variant of Adagrad, which ultimately

elps in quicker convergence. 
One of the core advantages of our algorithm is the number of

arameters which is significantly less when compared to other
xisting models making our model faster and easier to deploy
ithout compensating for the results. To account for rough estimate
n the speed of our algorithm relative to the other algorithms, we
alculate the number of floating point operations (FLOPs). FLOPs are
enerally calculated based on the number of parameters in a neural
etwork model. Having fewer FLOPs is particularly advantageous
or accelerating the predictions, making it easy and efficient to use
n bulk. The number of FLOPs done while predicting the results is
72, which is significantly lower than Agarwal ( 2023 ) (5056). As a
esult, the best-performing model is further deployed on Streamlit 4 

nd Amazon AWS 

5 so that a user can enter the values for all the
eatures and get a prediction along with the prediction probability
or the corresponding input. 

Next, while training, all the models are trained for a maximum
f 1500 epochs with a stopping condition on validation accuracy,
nsuring that the model will stop its training if there’s no increase in
alidation accuracy for 300 epochs. This introduction of stopping
riteria, along with the implemented dropout of 0.5 helps the
lgorithm a v oid o v erfitting and also a v oid unnecessary computations
hich would not impro v e the results. 

 RESULTS  A N D  DI SCUSSI ON  

he proposed method is e v aluated on the test sample that has never
een seen by the algorithms during its training. One of the major
easons to have a completely independent test data is to a v oid
ny biases that would occur if the model had updated its weights
n the same data. The test data consist of 142 BL Lacs and 59
SRQs that approximately comprise of 10 per cent of the labelled
ata. The test data are randomly chosen from the labelled data such
hat it contains all the possible input distributions in a generalized
ashion. 

For each model, we present a corresponding confusion matrix
hown in Fig. 2 . As seen in the figure, the bias initialization with
oft voting corresponds to lowest misclassification rate. Though,
he number of FSRQs predicted correctly by the algorithm is the
owest compared to other models, the numbers just differ by a
ew samples, and hence this does not pro v e to be a barrier. Next,
 https:// streamlit.io/ 
 https:// aws.amazon.com/ 

https://www.tensorflow.org/
https://streamlit.io/
https://aws.amazon.com/
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Figure 3. ROC curves along with corresponding AUC values. The ROC curve is plotted between the False Positive Rate and True Positive Rate. 
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Table 2. Performance summary: a comparison table between macro and weighted averages for all the models 
employed in this study. 

Model Macro average Weighted average 
Precision Recall F 1 score Precision Recall F 1 score 

Bias initialization with soft voting 0.924 0.906 0.914 0.930 0.930 0.930 
Supervised greedy pretraining 0.891 0.915 0.901 0.920 0.915 0.917 
Unsupervised greedy pretraining 0.857 0.879 0.866 0.891 0.886 0.887 
SSL autoencoder pretext 0.863 0.883 0.872 0.895 0.891 0.892 
SSL contrastive classification 0.857 0.879 0.866 0.891 0.886 0.887 
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o have an appropriate metric for comparison, with the help of
onfusion matrix, we calculate various parameters such as Precision,
ecall, F 1 score, and Accuracy as shown in Table 1 . As we are
oing a binary classification, we also calculate the area under the
urve (AUC) score corresponding to every model as seen in the
ast column of T able 1 . T o calculate AUC score, we first plot the
eceiver operating characteristic (ROC) curve that is a plot between
he ‘True Positive Rate’ and the ‘False Positive Rate’ as seen in
ig. 3 . Next, we calculate the area under curve to identify the AUC
alue. Ideally, the more close the value is to 1, the better the score
s. Though from AUC score it seems that greedy pretraining is an
ptimal technique to proceed with, the relative difference in the
core is minor compared to the misclassification error. Additionally,
n the context of imbalanced data classification, F 1 score is a much
etter metric than AUC. To validate our claim, we further calculate
he macro and weighted averages of all the metrics as shown in
able 2 . The major difference between macro and weighted average

s that macro average is the arithmetic mean of individual scores,
hile weighted average includes the individual sample sizes. Macro

verage is calculated using the unweighted mean, which treats all
lasses equally regardless of their support values. This can penalize
he model if the performance in minority classes is poor. On the
ther hand weighted average takes into account the number of true
nstances in each class to cope with class imbalance. As seen from
he table, both the macro and weighted average F 1 scores is better for
he bias initialization with soft voting. Thus considering its lowest

isclassification rate and highest weighted and macro F 1 scores, the
bias initialization with soft voting’ model turns out to be the best
ne. 
Next, we also plot the histogram corresponding to the output value

iven by the model on the test data. This helps in identifying if the
odels are o v erconfident in their predictions by simply comparing its

istogram with the misclassification rate. As in our case BL Lacs are
enoted by 0 and FSRQs are denoted by 1, the magnitude of the bars
lose to 0 relates to the algorithm being confident about the target
eing BL Lac, similar to the case with FSRQs wherein we focus on
agnitudes of the bars close to 1. As seen in Fig. 4 (a), compared to its

ounterparts, model does not give a confident prediction for a large
umber of samples. It is highly probable that most of the FSRQs
isclassified as BL Lacs will have a prediction value around 0.5,

nd the same is expected to be the case for BL Lacs misclassified as
SRQs. On the other hand for all the other algorithms particularly for

he self-supervised ones, we see a very high magnitude bar around
he value 0, indicating that model is confident about most of the
amples being BL Lacs, and the same has been observed from the
onfusion matrix. Ho we ver, an important point to note here is that,
hese algorithms tend to classify a lot of BLLs as FSRQs and hence
eing o v erconfident about wrong predictions. Thus, even though
he flatter distribution in Fig. 4 (a) might seem counterintuitive to
ell separated categories, it reflects the fact that this model is not
isproportionately biased to either class. The comparatively higher
NRAS 528, 976–986 (2024) 
eaks around 0 for models (Fig. 4 c–e) indicate that they are biased
owards BLLs, since they identify a considerably lesser number of
LLs correctly than Fig. 4 (a). 
In addition to its optimal performance, one of the major advantages

f our ‘Bias Initialization with Soft Voting Neural Network’ is the
odel’s parameter count, as discussed in the previous section. Re-

ently, numerous studies have explored similar approaches (Agarwal
023 ; Cooper et al. 2023 ; Sahak yan, Vardan yan & Khachatryan
023 ), employing a large number of features and are thus, limited
o a small number of samples, due to a high percentage of missing
alues in the catalogue. On the other hand, if the algorithms estimate
hese missing parameters e.g. redshift before classification, then their
esults will be heavily biased based on the imputation technique used.
n contrast, Agarwal’s optimal model shares the same number of
eatures as ours. Ho we ver, the considered model in the work requires
pproximately seven times more FLOPs compared to the presented
odel. This computational efficiency enhances the user experience
hen using our tool without compromising on results. One can find
 link to the web app in the DATA A V AILABILITY section. 

We make use of each model to make predictions for BCUs. 6 

he histograms can be seen in Fig. 5 . Out of 1115 BCU samples,
he optimal algorithm (‘bias initialization with soft voting’) of ours
redicts that there are 820 BL Lacs and 295 FSRQs, the list of which
s made available in our GitHub repository. This number can be
onsidered approximate due to the uncertainty and errors associated
ith every ML model. One of the other supporting evidence for

hese numbers is the redshift associated with the BCU samples.
n our previous paper, we observed that a significant number of
CUs in the catalogue have a lower redshift (refer to figs 4 and 5

n Gharat, Borthakur & Bhatta 2023 ), indicating that there would be
ore BL Lacs compared to FSRQs, which perfectly aligns with the

laim made in this study. Table 3 presents the predictive statistics for
he unclassified BCUs according to each model. Notably, there is a
eparate consensus between the greedy pretraining approaches and
etween the self-supervised learning techniques, with each of the
ve models concurring that no less than 60 per cent of these samples
re likely BLLs. 

We observe a significant dominance of BL Lacs in the resulting
ample, making up approximately 73 per cent, which is consistent
ith the observation in the 4LAC catalogue, where the number of
L Lacs is nearly double that of FSRQs. This dominance is further

upported by the challenges posed by a large number of BL Lac
bjects displaying weak or no emission lines, making the detection
f their optical counterpart information difficult and classification a
omplex task. Consequently, it is reasonable to infer that a significant
raction of the BCUs in the Fermi /LAT catalogue are highly likely to
e BL Lac objects. Also, it is important to note that considering the

https://github.com/abhimanyu911/bcu-classification/tree/main/bcu_predictions
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Figure 4. Distribution of predicted output on test data. Here, ‘0’ denotes the BL Lac and ‘1’ denotes the FSRQ. The closer the value is to these extremes, the 
more confident the model is in its prediction. 
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Figure 5. Distribution of predicted output on BCU sources. Here, ‘0’ denotes the BL Lac and ‘1’ denotes the FSRQ. Again, the closer the value is to these 
extremes, the more confident the model is in its prediction. 
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Table 3. Number of BLLs and FSRQs predicted for the 1115 BCUs by different models. 

Model Number of BLLs predicted Number of FSRQs predicted 

Bias initialization with soft voting 890 295 
Supervised greedy pretraining 691 424 
Unsupervised greedy pretraining 691 424 
SSL autoencoder pretext 754 361 
SSL contrastive classification 757 358 

Figure 6. The dichotomy between BL Lacs and FSRQs is evident in their distribution within the predicted sample. 
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inary nature of the classification, limited to BL Lacs and FSRQs,
nd excluding other potential classes such as Seyferts, radio galaxies, 
nd other AGNs – constituting only a small fraction of the sample –
e anticipate that less than 3 per cent of non-blazar AGN subclasses

ould potentially introduce contamination in the BCU sample. 
To explain the apparent dichotomy between BL Lacs and FSRQs, 

he intrinsic difference in the nature of the accretion disc and 
hysical origins of gamma-ray emissions in BL Lacs and FSRQs 
ay contribute to their distinct gamma-ray properties, such as the 

arger gamma-ray luminosity of FSRQs and the harder gamma-ray 
pectral characteristics of BL Lacs. For instance, BL Lacs can have 
 radiatively inefficient accretion flow and be more magnetically 
ominated, resulting in a lower mass accretion rate compared to 
SRQs (e.g. Ghisellini, Maraschi & Tavecchio 2009 ; Ghisellini 
t al. 2011 ; Mondal & Mukhopadhyay 2019 ). Similarly, the absence
f circumnuclear gas near the central engine, as indicated by the 
eatureless optical spectra of BL Lacs, suggests that the origin of
amma-ray emission in the sources can predominantly be ascribed 
o SSC emission (e.g. Mastichiadis & Kirk 1997 ). On the other hand,
tudies of the broad-band SED of FSRQs suggest that gamma-ray 
mission in FSRQs is mainly contributed by External-Compton (EC) 
rocesses ( see e.g. Hayashida et al. 2015 , and reference therein). 
To ensure the model’s consistency in accordance with the char- 

cteristic features of the two classes, we plotted the distribution of
he photon index. We observed that the BL Lacs in the predicted
ample exhibit a relatively harder photon index compared to FSRQs, 
s illustrated in Fig. 6 (a) (see also figs 1 and 3 in Ajello et al. 2022 ).
dditionally, we also plotted a graph between photon index and log 
f pivot energy and observed results align with the expected trend, 
ositioning BL Lacs in the upper left of the anticorrelation trend, as
een in Fig. 6 (b) (see also fig. 2 in Kang et al. 2019 ). The results
rom the study can be further verified and refined through dedicated 
ultiwa velength observations, inv olving telescopes ranging from 
t
adio to TeV. Moreo v er, as BL Lacs represent the most extreme
lass of AGNs, this sample can serve as the target sample for future
round-based TeV and PeV telescopes. 

 C O N C L U S I O N  

he recent catalogue from the Fermi /LAT gamma-ray telescope 
ontains a large number of AGN sources that require decisive 
lassification. This is because classification using gamma-ray data 
lone is not al w ays possible. In this study, we employ multiple
lgorithms to classify blazars of unknown class into BL Lacs and
SRQs. The proposed models exhibit simplicity in their nature, with 

heir distinctiveness stemming from the fine-tuning of the method 
hrough appropriate initialization and the incorporation of soft voting. 
dditionally, we delve into a couple of self-supervised algorithms 

n their vanilla form to assess their capabilities. ‘Bias initialization 
ith soft voting’ emerges as the best-performing model in our case.
he algorithm’s ability to make a larger number of predictions can
e attributed to the minimal number of features it utilizes, which
tands as a key factor. Furthermore, our study places emphasis on
aintaining a minimal number of parameters while still delivering 

trong performance, which pro v es to be a pivotal feature. This enables
s to deploy the model in various scenarios. 
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pace Flight Center. Following the reproducibility and open source
tandards followed by the ML community, we make all our codes
ublic that can be accessed through our Github repository ( https:
/ github.com/abhimanyu911/ bcu-classification ). Further, to have a
omfortable experience with our method, the best-performing model
s deployed on AWS ( http:// 13.239.10.157:8501/ ) and Streamlit
 ht tps://bcu-classificat ion-ml.streamlit .app/). Note that the AWS app
ay get deacti v ated after the expiry of credits, in such cases
e recommend a user to make use of Streamlit. In case of any

ssues, a docker image can be provided on reasonable request to
arveshgharat19@gmail.com. 
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